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A theory is developed to treat quantitatively the self-diffusion of water in protein solutions. The result can be used to 
study the controversial problem of protein hydration from a new angle. The hydration of proteins computed from self-
diffusion data by means of the present theory is independent of the molecular weight of the protein, and for proteins such as 
ovalbumin depends only slightly on molecular shape. The hydration of ovalbumin in its isoelectric salt-free solution at 
10.0° is determined in the present work to be 0.18 ± 0.01 g. of water per g. of dry protein. By combining this value with 
the diffusion data for ovalbumin, the axial ratios of the equivalent ellipsoid of revolution for ovalbumin are calculated to be 
2.6:1:1. These results are discussed and compared with some selected data from the dielectric absorption and low-angle 
X-ray scattering measurements for ovalbumin solutions. Existing data on the viscosity of ovalbumin solutions are also ex
amined, and the usual interpretation of intrinsic viscosity is criticized. 

The hydration of proteins in solution is a problem 
of fundamental importance in biochemistry and 
biophysics. The term "hydration" is usually 
defined as the average amount of water carried by 
unit weight of protein when the protein molecules 
migrate through solution (e.g., in diffusion, ordi
nary electrophoresis and sedimentation experi
ments). Although a huge amount of research 
work has been reported in the literature, there still 
appears to be no single unambiguous method avail
able for determining quantitatively the hydration 
of proteins in solution. Estimations of this hydra
tion by different experimental methods have re
cently been comprehensively reviewed by Edsall.1 

In most of these methods the measured result is 
expressed as a function of hydration and the shape 
of protein molecule. Since neither the hydration 
nor the shape of the hydrated protein molecule is 
known, it is consequently not possible to determine 
accurately either of these by any of these methods. 
The only exception appears to be the dielectric 
dispersion method of Oncley2 in which the dielectric 
absorption and dispersion are explained solely by 
the rotation of rigid ellipsoidal protein molecules 
with permanent dipole moments. However, ac
cording to Kirkwood and Shumaker3 "the relaxa
tion time spectrum of an ellipsoidal molecule will 

(1) J". T. Edsall, Chap. 7, "The Proteins" (Edited by H. Neurath 
and K. Bailey), Vol. I, Part B, Academic Press, Inc., New York, N. Y., 
1953. 

(2) See reference 1. 
(3) T. G. Kirkwood and J. B. Shumaker, Proc. Natl. Acad. Sci., 38, 

855 (1952). 

be determined not only by external rotatory diffu
sion but also by the diffusion of the mobile protons 
on the surface of the molecule." While evidences 
for the validity of the Kirkwood^Shumaker theory 
for dielectric dispersion are yet to be established, 
one cannot in the meantime accept the results of 
Oncley and co-workers without reservations. More
over, even if we accept Oncley's interpretation of 
dielectric dispersion, the experimental uncertainties 
are usually such that it is difficult to draw quantita
tive conclusions from these measurements. In the 
present work the problem of protein hydration is 
studied from a new angle. This method is based 
experimentally on the measurement of the self-
diffusion of water in protein solutions. Provided 
the self-diffusion coefficient of the protein is very 
small as compared to that of water in the same 
solution, the hydration of the protein determined 
by the present method is independent of the 
numerical value of the molecular weight of the 
protein. In some cases, e.g., for prolate ellipsoids of 
revolution, the value of hydration so determined is 
also almost independent of the shape of the protein 
molecules. 

Theory of the Self-diffusion of Water in Protein 
Solutions 

The self-diffusion coefficient of water in protein 
solutions is smaller than that in pure water for two 
reasons. Firstly, protein molecules have a much 
larger volume and a much smaller self-diffusion 
coefficient than the water molecules. These large 
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and almost stationary (compared to the Brownian 
motion of the water molecules) protein molecules 
obstruct the paths for water molecules; i.e., the 
water molecules near a protein molecule have to 
diffuse along longer paths in order to get to the 
other side of the protein molecule. But since in 
experimental measurements we compute the self-
diffusion coefficient of water by taking a macro
scopic dimension of the diffusion apparatus as the 
length of the diffusion path irrespective of whether 
or not the diffusion path is blocked microscopically, 
the net effect of the above considerations will be to 
yield a measured self-diffusion coefficient of water 
in protein solution smaller than that in pure water. 
In what follows we shall refer to this effect as the 
"obstruction effect." The second reason is that a 
fraction of the water molecules are firmly attached 
to the protein molecules (hydration) and hence do 
not contribute to the rate of self-diffusion of water. 
For the term "hydration" we refer to the definition 
given at the beginning of this article. Thus, if the 
rath water molecule is so loosely attached to 
the protein molecule that it remains attached to the 
latter during only part of the time when the latter 
migrates, we shall count the former as only a frac
tion of a hydrated water molecule. Since in self-
diffusion measurements we make no distinction 
between "bound" and "free" water molecules, the 
measured self-diffusion coefficient of total water in 
protein solution is consequently less than that in 
pure water. We shall refer to this second effect 
as the "direct hydration effect" to distinguish it 
from the effect of hydration on the volume of the 
hydrated protein molecules to be discussed in the 
following paragraphs under "obstruction effect." 

For aqueous solutions of small molecules or ions 
there is a third effect due to the distortion or "break
ing down" of water structure by the solute par
ticles. Thus for some aqueous solutions of slightly 
hydrated electrolytes the distortion in water struc
ture caused by these ions is large enough to make 
the self-diffusion coefficient of water in these solu
tions even greater than that in pure water.4 Be
cause of this kind of distortion effect the tem
perature coefficients of the limiting mobilities of 
these slightly hydrated ions are often appreciably 
smaller than the temperature coefficient of the 
fluidity of water.8 Consequently, for these ions 
the product D°7}0/T, where D° is the self-diffusion 
coefficient of the ion at infinite dilution and 570 
is the viscosity of pure water, has been found to 
decrease with increasing temperature. 

For aqueous protein solutions, however, no 
appreciable amount of distortion of this kind has 
ever been detected. Indeed the general success of 
the approximate relationship D^/T = constant 
used by numerous workers to correlate the limiting 
diffusion coefficient, D% of protein molecules with the 
viscosity, J?O, of water at different temperatures T may 
be taken as evidence that no appreciable amount of 
distortion in the structure of "free" water exists in 
protein solutions. Consequently we shall neglect 
this third effect in the following treatment of the 
problem. 

(4) J. H. Wang, J. Phys. Chem., 68, 686 (1954). 
(o) J. H. Wang, T H I S JOURNAL, 7«, 1612 (1952). 

1. The Obstruction Effect.—To simplify the 
boundary conditions of the present problem let us 
consider two liquid baths of infinite capacity con
nected by a tube of small but uniform cross-sec
tional area. Let one bath be filled with a solution 
of protein of a given concentration in ordinary 
water, and the other bath be filled with a solution 
of protein ^H2018-labeled water at the same pro
tein concentration. The connecting tube may 
initially be filled with the solution in either bath. 
Diffusion of H2O

18 through the connecting tube will 
take place. As Dt/I2 -*• <», where / is the length 
of the tube, a steady state will be reached at which 
the concentration at each point in the tube remains 
constant. Thus we have 

V2C = O (1) 

at each point in the tube, where V2 is the Laplacian 
operator and c is the concentration of labeled water 
molecules. Let us assume that the shape of oval
bumin molecules can be approximated by ellipsoids 
with principal semi-axes a, b and c, respectively, and 
consider a particular ovalbumin molecule whose 
a-axis is for the moment parallel to the direction of 
the diffusion tube as the fundamental ellipsoid of 
our system of ellipsoidal coordinates X, y., v. We 
shall refer to the direction of the diffusion tube as 
the x-axis with origin located at the center of our 
fundamental ellipsoid. If a > b > c, we have by 
definition X > — c2 > ft > — b2 > v > — a2 and 
equation 1 can be written as 

j(,i - <-)[(a2 + X)1A(J* + X)1A(C2 + X)V. J J 2 

+ (r - X)[(a2 + n)l/Kb* + It)1ZKe* + JO'/» ~ ] 2 (2) 

+ ( X - M)[(a2 + X)1A(J* + „)V.(e» + „)'/> £ T ( c = O 

The equation of the fundamental ellipsoid is now 
simply X = O and the new coordinates X, n, v 
are related to the Cartesian coordinates x, y, z by 

ax 2(o2 + x) K ' 
etc. 

A convenient solution of (2) for the present prob
lem is of the form 

C = K1 + K2XJx ^ (4) 

where 
JJ0(X) = (a2 + X)3A(J^ + X)Vs(C2 + X)1A 

and Ki, K2 and K3 are arbitrary constants. The 
boundary conditions are that at distances suffi
ciently far from the ellipsoid the "obstruction" 
effect should vanish, i.e. 

c = c + c'x at X = c» (5) 

where c is the average concentration of labeled 
water at x = O and c' is equal to the difference in 
the concentration of labeled water in the two 
infinite baths divided by the length of the diffusion 
tube, and that the "free" water molecules in contact 
with the ellipsoid can only diffuse tangentially to 
the surface of the ellipsoid, i.e. 

( i )c /dX)x-o =» O (G) 
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Combining equations 4, 5, 6, and 3 we obtain the 
final form of the solution of (2) as 

c - 'c + T ^ - [lc - fomii (7) 

—— — oyn abc 

where 

-X ' 0„(X) 

To compute the obstruction effect let us consider 
the portion of liquid enclosed in the imaginary 
cylinder with dimensions much larger than those 
of the protein molecules and with axis parallel to 
the x-axis as depicted by the broken lines in Fig. 1. 
The rate of diffusional flow of labeled water mole
cules in the x-direction averaged over the entire 
volume of this imaginary cylinder is 

A(X1 

•Do C / d £ \ 
- X1) Jy \bxj dv (8) 

where A is the cross-sectional area, and X2 — X\ is the 
length of the imaginary cylinder, and the integration 
is to be carried out over the entire volume of the 
cylinder. Equation 8 can be transformed by means 
of Green's theorem to 

q A(x. -X1) J J 5 
c cos 9ds (9) 

where the integration is to be carried out over the 
entire surface of the imaginary cylinder as well as 
the surfaces of all the ellipsoids enclosed in the 
cylinder, and 0 is the angle between the normal of 
the surface and the #-axis. 

Substituting the boundary values of c as given 
by (7) by putting X = =° at the surface of the imag
inary cylinder and X = 0 at the surface of each of the 
ellipsoids and carrying out partial integration, we 
obtain 

-D0 [V - 1 
A(x2 - X1) ?JX c cos 8ds (10) 

= — ZV' f l — Cta<j>] 

where 

2 — abc wa 

and </> is the total volume fraction occupied by the 
hydrated protein molecules. 

Let us define an effective self-diffusion coefficient, 
ZV, of the "free" water molecules in the protein 
solution by 

2 = -ZV C (13) 

2 

2. 
Fig. 1.—Diagrammatic representation of a section of the 

diffusion tube discussed in the treatment of the obstruction 
effect. 

Comparison of (12) and (13) gives 
Da' = ( 1 - CCaQ)D0 (14) 

- - J; 

where the symbol X! represents summation over all 
i 

ellipsoids enclosed in the imaginary cylinder. 
Differentiating (7) with respect to x and putting 

X = 0, we get 

(*\ =
 2c ' (H) 

\bx/\ = ti 2 — abcua 
Transforming the surface integrals in (10) back to 
volume integrals by means of Green's theorem and 
substituting the value of (dc/bx)\ • o as given by 
(11), we obtain 

r 1 / 2 N f - I inerero: 
«= -D*' L1 - A(X1 - X1) S U = ^ J J K , dsJ r 

(12) Jo 

Equation 14 has been derived on the assumption 
that the ellipsoids are so oriented that their a-axes 
are parallel to the diffusion tube. Had we assumed 
that the 6-axes were parallel to the diffusion tube, 
we would have obtained an expression similar to 
(14) but with a and b interchanged. Therefore, by 
symmetry we can immediately write down the 
general expression 

Di' = (1 - ai0)2?o 
where 

abc mi 
d\ 

(15) 

(*» + X)(a2 + X)'A(J> + X)'A(C2 + X)1A 
with i = a,b,c in turn. 

In order to simplify the computation, let us 
further assume that the ellipsoids have two of their 
principal axes equal, i.e., ellipsoids of revolution. 
For prolate ellipsoids, we have 

a = pb = pc, with p > 1 

Therefore 

dx 
(a1 + X)«A(6» + X) 

1 [" 1 l n a + Vo2 - i2 _ 2"| 
a* - b' \_\/a2 - b* n a - V o 2 - b* aj 

and consequently 
1 

P2 - 1 2(p2 - 1)'A In + VP 

(16) 

(17) 

p - v 7 2 - i 
For the special case a = b = c, the ellipsoid 

becomes a sphere, and we have by (15) 
Cta = Ctl> = Ct* = 1.5 
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Similarly 

-2 + — 
1. 2(p* 

P—u; l" — V p 

(18) 

I ) 3 A 

For oblate ellipsoids, we have 
a = pb = pc, with p < 1 

Similar computation yields 

CLa ~ 

1 

V P 2 ~ - " 1 

(19) 
and 

(1 - p")V» S" •»- (vr^r.)] 
(20) 

Since in a real solution these ellipsoids are 
oriented in all possible random directions, some 
average value, a, should be used instead of either 
aa or ah- To treat the general problem, let us 
consider an ellipsoid in solution so oriented tha t 
the direction cosines of the x-axis (parallel to the 
diffusion tube) referred to the principle axes of this 
ellipsoid are la, k and I0. T h e rates of diffusional 
flow in the direction of the three principal axes are 

qa = —D'ac'h, Qb = —D'tc'h, Qr. = —D'cc'h (21) 

respectively. Thus the total rate of diffusional 
flow, q, in the x-direction is 

q = qJa + qbh + qJc (22) 

Substi tuting (21) in (22) and average over all 
possible orientations, we have 

-DV = -^ C(DJa2 + Dblb* + D h2) da (23) 

where Q is the solid angle and the average effective 
self-diffusion coefficient, D', of the "free" water 
molecules is defined by (23). Since the average 
value of each direction cosine is equal to 1/3, we 
have from (23) 

D' = g (Da + Db + Dc) (24) 

Equat ion 24 has been derived by Perrin6 from the 
theory of Brownian motion. Defining d by 

D' = D°(l - W>) (25) 

and substituting values of D'a, D'b, D'c given by 
(15) in (24), we obtain 

a = „ (aa + + «.) (26) 

dt 

Values of a are computed from equations (26), 
(17), (18), (19) and (20) for ellipsoids of revolution 
with different axial ratio p. These are ^, * _ 
listed for prolate and oblate ellipsoids 
separately in Table I. The application 
and significance of these values will be 
discussed in later sections of this article. 

I t is clear from the above derivation tha t equa
tion 23 is strictly valid only for dilute protein solu
tions. However, since in this t rea tment we have 
minimized the effect of interactions between protein 

(6) F. Perrin, J. Phys., 7, 1 (1936). 

TABLE I 

VALUES OF S IN EQUATION 25 FOR ELLIPSOIDS OF REVOLU

TION WITH DIFFERENT AXIAL RATIO 

Prolate ellipsoids 
= a/b a 

1.0 1.500 
1.5 1.516 
2.0 1.539 
2 .5 1.561 
3.0 1.576 
4.0 1.601 
5.0 1.616 
0.0 1.627 
7.0 1.634 
8.0 1.640 
9.0 1.644 

10.0 1.647 

Oblate 
l/i> = b/a 

1.0 
1.5 
2.0 
2 . 5 
3.0 
4.0 
5.0 
6.0 
7.0 
8.0 
9 0 

10.0 

ellipsoids 

1.500 
1.525 
1.577 
1.649 
1.730 
1.909 
2.101 
2.295 
2.489 
2.694 
2.916 
3.107 

co l . 667 °= ro 

molecules by disregarding the Brownian motion 
of the protein molecules, we may expect equation 
25 to hold even for fairly concentrated protein 
solutions as long as the volume fraction of "free" 
water is still much larger than tha t of the hydrated 
protein. But for very concentrated protein solu
tions in which equation 5 can no longer be used as 
the correct boundary condition, the result (25) 
cannot be expected to hold. T h u s one should be 
aware of the limitation of equation 25 in applying 
it to interpret experimental data. For example, 
it would obviously be absurd to predict from 
equation 25 tha t the effective self-diffusion co
efficient of water be negative in protein solutions 
with <f>> I/a. 

2. The Direct Hydration Effect.—The evalua
tion of the direct hydration effect is complicated by 
the rate of exchange of labeled water molecules be
tween "bound" and "free" water, because this ex
change introduces a time factor which is absent in 
equation 1. In order to analyze this complication 
it is expedient to consider the more general self-
diffusion equation for non-stationary states. In 
the absence of protein hydration this equation 
may be writ ten as 

dt a*2 

for our experimental system. Let us define C0* 
and Ch* as the concentration of total H2O18 and the 
concentration of "bound" H2O18, respectively, in g. 
per cc. of solution, the concentration of "free" 
H2O18 must then be Co* — Cn*. Let C0 and ch be 
the concentrations of total water and total "bound" 
water, respectively. The general relationships 
between concentrations, time and coordinate in a 
system with both finite ra te of self-diffusion and 
exchange may now be written as 

*J = TV d W ~ cl'*) 
" " a*2 

D, 
52Ch* 

dx2 

L Ch V. Co — Ch / J 

L V C0 — Ch / C h J 

(27) 

where Dp is the self-diffusion coefficient of the pro
tein and k' is defined as an effective rate constant 
for the exchange of labeled water molecules be
tween "free" and "bound" water. Combining 
equations 27 we obtain 
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dco* 
D, ̂ ^ n + Di bx2 (28) 

Let us now assume firstly tha t the term £>p(d
2Ch*/ 

dx'2) is negligibly small as compared to either of the 
other terms in equation 28, and secondly tha t the 
rate of exchange of labeled water molecules between 
"free" and "bound" water is instantaneously fast, 

L / ^ d(Vo* - Ch*) C)Ch* rv£>2(co* - Ch*) 

*-e-* »"A—di or -W orD w or 

D 
5 2 c h * 

p bx2 

* 

in equations 27. Consequently 

Zc0* - ch*\ 
\ C0 - c h / 

< I, i.e. 

ChJ 
Ch 

Co* Ch' 
Ca — Ch Co 

j£h_ 
I Ch 

(29) 

at all points along the diffusion path , where a is the 
isotopic mole fraction of H2O18 in water a t given 
x and t. Here we have neglected the small isotope-
effect for the case of H2O18 as tracer. 

Equation 28 can now be simplified to 

_ = Co _ = D (c„ Ch) 
dx2 

But by definition we have 

da* _ b V 
U ~ dx2 CoD 

Zx* 

(30) 

(31) 

where D is the experimentally measured apparent 
self-diffusion coefficient of water in protein solu
tion. Hence 

a-^O-s) (32) 

Since the self-diffusion coefficient, Dp, of the 
protein is in general much smaller than the effective 
self-diffusion coefficient, D', of water and tha t for 
most protein solutions (d2ch*/dx2) is considerably 
smaller than d2(c0* — ct*)/dx2, our first assumption 
tha t the product Dp(£)2Ch*/dx2) can be neglected as 
compared to other terms in equation 28 is justified. 
The second assumption tha t the rate of exchange of 
labeled water molecules between "bound" and 
"free" water can be considered as instantaneously 
fast is supported by the failure of our a t t empt to 
detect a slow exchange of this kind. Thus by 
diluting a rapidly stirred concentrated solution of 
ovalbumin in ordinary water with labeled water 
and then immediately evaporating small fractions 
of the water in solution into a mass spectrometer, 
we found tha t the exchange rate was immeasurably 
fast a t room temperatures. The self-diffusion 
of water in ovalbumin solutions a t 10° has been 
measured by Wang, Anfinsen and Polestra.7 Since 
each of their diffusion measurements lasted more 
than a day, we may for practical purposes consider 
the rate of exchange of labeled water molecules as 
instantaneous in interpreting their data by the 
present theory. 

3. The Complete Theoretical Equation and Its 
Verification.—Let us define H as the hydrat ion of 
the protein in solution expressed in g. of "bound" 
water per g. of anhydrous protein. Let cp be the 
concentration of the protein in g. of anhydrous 
protein per cc. of solution, and w be the weight -

(7) J. H. Wang, C. B. Anfinsen and F. M. Polestra, T H I S JOURNAL, 
76, 4763 (1954). 

fraction of anhydrous protein in solution {i.e., 
10Ow is the percentage by weight of dry protein in 
solution). Then we have 

Cp 

Co 
(33) 

and 
CpFp + C0/J0 = 1 (34) 

where Vp is the apparent specific volume of an
hydrous protein in its aqueous solution and du 

is the density of pure water. The volume-fraction, 
4>, of hydrated protein may now be written as 

Fp + H/d0 
0 = Cp ( Vp + H/do) 

V» + (IAZo)[(I - vi)/w] (35) 

The use of the expression cP(Vp + H/do) for the 
volume-fraction of the hydrated protein has been a 
controversial subject in the literature. For ex
ample, Scheraga and Mandelkern8 hold tha t this 
neglects the electrostriction, selective adsorption, 
other hydrodynamic_ effects, etc., making it im
possible to identify Vp with the specific volume of 
the anhydrous protein. The fact is, however, t ha t 
Fp is in general different from the specific volume 
of the dry protein, and it would be a mistake to 
identify these two quantities. Had we used the 
specific volume of the dry protein instead of FP 

in equation 35, we would indeed have introduced an 
error there. But we used the apparent specific 
volume, Vp, of the anhydrous protein in solution 
which already includes the effect of electrostriction. 
The only approximation we made in equation 35 
is tha t the effect of electrostriction is appreciable 
only in the hydration layer of each protein molecule. 
If this is true, the quant i ty (Vp + H/d0) should 
represent the true specific volume of the hydrated 
protein, because then Vp will be smaller than the 
" t rue specific volume" of the anhydrous protein in 
solution and H/do will be greater than the " t rue 
volume" of "bound" water by exactly the same 
amount . There is some experimental evidence in 
favor of this approximate assumption. For ex
ample, it is generally agreed tha t electrostriction 
in protein solutions is caused by the local collapse 
or distortion of the structure of water surrounding 
the protein due to the strong at tract ion of the 
latter for the former molecules. I t has already been 
pointed above t ha t the approximate constancy of 
the quant i ty Dpt}o/Tior a given protein a t different 
temperatures indicates the absence of appreciable 
distortion in the structure of "free" water in protein 
solutions. Consequently we may infer tha t elec
trostriction in protein solutions occurs only in 
"bound" water. 

The influence of selective adsorption and other 
hydrodynamic effects as pointed out by Scheraga 
and Mandelkern may be important in interpreting 
protein diffusion, sedimentation velocity and vis
cosity data . But inasmuch as we are here con
cerned only with salt-free protein in water solu
tions, there can be no selective adsorption phenom
enon other than simple hydration. The hydro-
dynamic effects are irrelevant to the present prob
lem, because we have made no use of hydrodynamic 
theories in this work. Indeed, the above treat
ment bears more mathematical resemblance to the 

(8) H. A. Scheraga and L. Mandelkern, ibid., 78, 179 (1953). 
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dynamics of perfect fluids than hydrodynamics. 
While deviations of the real hydrated protein 
molecules from ellipsoids would cause some un
certainty in the above estimated magnitude of the 
obstruction effect, this uncertainty is much less 
serious than the corresponding uncertainties in the 
hydrodynamic theories of protein diffusion or vis
cosity. This point will be further examined in a 
later section of this article. 

By combining equations 25, 32, 33 and 35, we 
obtain the complete equation 

I |~ FP + H/do "11 

»-*]>-[r. +Q(L^)Ji 
0 - ( H T ; ) * ] <«> 

For the convenience of numerical computations, 
equation 36 may be rearranged to the following form 

^- - A, = 1 - [<s( Fp J0 + H) + H]w + A2 (37) 

where 
= a Fp A(Fp<Zo- l)ui2 

1 1 + (Fpdo - l)w 
= r sH(Jpdo - 1) _ H 

2 Ll -F(F 1A - l ) u i l - w +_ 
« ( 7 P * + H)H -1 , 

1 + (fVo - l)ui(l - Ui)J w 

Equation 37 will be used as the basis of the com
putat ion for Hfrom the self-diffusion data of Wang, 
Anfinsen and Polestra7 for ovalbumin solutions. 
I t may be noticed from (37) t ha t the magnitudes of 
both Ai and A2 increase with protein concentration. 
However, even for the most concentrated oval
bumin solution in the above mentioned work the 
magnitudes of A1 and A2 are still very small as 
compared to the other terms in (37). Thus for 
their most concentrated solution lit « 0.25. Using 

1.1 1 1 

1.0 

0.9 -

I 
^ 0 . 8 -
C5 

0.7 -

0.6 -

0.5 I u I I l 

0.00 0.05 0.10 0.15 0.20 0.25 
Ul. 

Fig. 2.—Experimental test of equation 37 for ovalbumin 
solutions. 

the approximate values a « 1.6, H « 0.2, Pp = 
0.75, do = 1 for ovalbumin solution, we can compute 
the approximate value of A1 and A2 to be 

A1 w - 0 . 0 2 ; A2 a -0 .003 

It may be noticed from Table II that the measured 
value of D/D0 varies from 1 at infinite dilution to 
about 0.6 for 25% ovalbumin solution with average 
experimental uncertainty of about 1%. Hence 
even for the most concentrated solution in the 
above mentioned work the term A2 is still negligible. 
Consequently if we plot (D/Da) — A1 vs. w_we 
should get a straight line with slope equal to a( Vpd0 

+ H) + H from which the hydration of protein 
can be computed. Values of (D/Do) — Ai com
puted from the experimental data7 are listed in 
Table II. 

TABLE II 

DATA FOR TESTING EQUATION (37) 
W 

0.000 
.106 
.190 
.244 
.245 

D/D, 

1.000 
0.824 

.674 

.585 

.584 

A1 

0.000 
- .003 
- .012 
- .019 
- .019 

(D/Do) - A1 

1.000 
0.827 

. 086 

. 604 

. 603 

In computing the values of A1 listed in Table I I , 
the value of a has been assumed to be 1.6. I t 
may be noticed from Table I tha t the exact value of a 
for prolate ellipsoids varies from 1.5 to 1.67 de
pending on the axial ratio. Therefore this assumed 
value of 5 may have a maximum error of 7%. 
But since the magnitude of Ai is less than 4 % of the 
magnitude of (D/Do) — Ai, the error in (D/D0) — Ai 
due to error in this assumed value of a must be less 
than 0 . 3 % and is consequently entirely negligible 
as compared to other experimental uncertainties. 

Values in the last column of Table I I are plotted 
vs. w in Fig. 2. The plot is, within experimental 
uncertainties, a very good straight line as predicted 
by equation 37. Indeed this agreement is even 
better than what we expected, for in deriving (37), 
we neglected the perturbing effect of other protein 
molecules on the concentration gradients in the 
vicinity of the fundamental ellipsoid. This kind of 
perturbation may have appreciable effect on the 
measured self-diffusion coefficient of water in con
centrated solutions. The rather surprising agree
ment between theory and experiment as depicted 
in Fig. 2 may either be due to the particular case of 
the ovalbumin as part ly fortuitous, or to the fact 
tha t the effect of these interactions on the measured 
self-diffusion coefficient of water is small. More 
experimental work in this direction is necessary 
before a definite conclusion on this point can be 
drawn. But even if the (D/Do) — A1 vs. w plot 
for some protein solutions deviates from a straight 
line at high concentrations, we should not have 
much difficulty in determining the hydration of the 
protein from such a plot, because it is only necessary 
to plot the values of (D/Do) — A1 in dilute solutions 
and get the limiting slope. 

Computation of the Hydration of Ovalbumin 
The slope of the (D/Do) - Aivs.w plot in Fig. 2 

is - 1 . 6 3 . Thus by (37) we have 
X.63 = a(Fp& + H) + Ii (38) 
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If we assume that the shape of hydrated ovalbumin 
molecules can be approximated by prolate ellip
soids, Table I shows that the value of a varies only 
slightly when the axial ratio changes by a factor 
of 2 or 3. Thus as a first approximation we may 
guess that the axial ratio of ovalbumin lies between 
2 and 4 corresponding to a = 1.539 and 1.601, 
respectively. If we take the average value 1.57 
for a in (38) with Vp = 0.746 and do = 1, we obtain 

H = 0.18 ± 0.01 

where the uncertainty in H is estimated from the 
experimental errors of the self-diffusion measure
ments. This value of hydration, together with the 
experimentally determined limiting diffusion co
efficient of ovalbumin, enable us to compute the 
axial ratio of the equivalent ellipsoid for oval
bumin. It will be shown in the next section that 
this axial ratio is 2.6, corresponding to a = 1.56. 
If we now substitute this new value of 5 in (38) 
to make a second approximation in computing H, 
we will find that the new value of H differs from 
that given above by an amount less than the experi
mental uncertainties, and consequently the second 
approximation is quite unnecessary. 

We may also recall that equation 37 was derived 
on the assumption that the shape of hydrated pro
tein molecules can be approximated by compact 
ellipsoids. The actual shape of these molecules 
may of course deviate more or less from an ellipsoid. 
However, Table I shows that a changes only little 
even when the shape of the ellipsoid changes con
tinually from that of a sphere, through a series of 
stages of elongated ellipsoids, and finally into that 
of an infinite thin rod. This indicates that our 
method is not shape-sensitive, and that the value 
of hydration so obtained should remain valid even 
if the actual shape of the protein molecules deviates 
slightly from that of a compact prolate ellipsoid. 

For oblate ellipsoids, Table I shows that a is 
quite sensitive to the axial ratio, and consequently 
the above mentioned advantage disappears. This 
difference in property between prolate and oblate 
ellipsoids is easily understandable from simple 
geometric considerations. Thus as p -* °=, the 
prolate ellipsoids degenerate into infinite thin rods. 
The water molecules can still diffuse through the 
network of thin rods no matter how these rods are 
oriented. But as 1/p —*• °=, the oblate ellipsoids 
degenerate into infinite sheets. Some of these 
sheets will be so oriented as to block the diffusion 
path completely, i.e., to exhibit an infinite obstruc
tion effect. 

The hydration of oblate protein molecules may be 
computed by successive approximations similar to 
those described above. But inasmuch as a for 
oblate ellipsoids with (1/p) > 1.5 is quite shape-
sensitive, the numerical result so obtained may 
include appreciable error due to deviation of the 
shape of real molecules from an oblate ellipsoid. 
Had we assumed an oblate ellipsoid for the shape of 
ovalbumin and tried to compute the hydration and 
axial ratio from the diffusion data for both water 
and protein by means of this procedure, we would 
obtain H = 0.13, 1/p = 2.9 as our final results. 
It will be shown in a later section of this article that 
these values are not consistent with low angle X-ray 

scattering data. Consequently we may take this 
observation as evidence against the oblate ellipsoid 
as a possible shape for ovalbumin if we accept the 
X-ray data as correct. 

Estimation of the Shape of the Hydrated Oval
bumin Molecule 

If we accept 5.80 X 1O-7 cm.!/sec. as the limiting 
diffusion coefficient of ovalbumin in its* infinitely 
dilute aqueous solution at 10°7, we may com
pute the axial ratio of the equivalent ellipsoid of 
ovalbumin by the usual procedure9, using H = 
0.18 obtained above and 44000 as the molecular 
weight of ovalbumin. The axial ratio, p = a/b, 
so obtained is 2.6 ± 0.1. But since the real hy
drated ovalbumin molecules may deviate consider
ably from ellipsoids of revolution, the exact rela
tionship between this axial ratio and the shape of 
the real molecules is somewhat uncertain.8 

Comparison with Low Angle X-Ray Scattering Data 
Guinier10 has shown that the scattering of X-ray 

at low angles by protein solutions can be inter
preted by a single constant R characteristic of the 
shape of the protein molecules. According to 
Guinier this constant R, which he called the 
"radius of gyration," is related to the axial ratio 
P = a/b and the semi-axis b by 

* - (VH2)' 
for ellipsoids of revolution. Thus if either p or b 
is known, the other quantity can be computed from 
the value of R determined from X-ray scattering 
measurements according to (39). By combining 
the values of R obtained from X-ray scattering 
measurements with diffusion and sedimentation 
data, Ritland, Kaesberg and Beeman11 have esti
mated the hydration and axial ratio of a number of 
proteins. The values estimated by these workers 
appear reasonable, although their method of 
computation which is based on the implicit assump
tion that p has the same value in both X-ray 
scattering and diffusion measurements is in general 
not strictly valid. In some special cases, such as 
the uniform distribution of hydration throughout 
the protein molecule, p will indeed have the same 
value in these two sets of measurements. How
ever, in order to explain the high solubility of pro
teins such as ovalbumin, the weight of opinion 
favors the assumption that a major part of the 
hydration is bound externally to the protein. Thus 
if most of the hydration is distributed in the form 
of a thin layer of uniform thickness 5 wrapped 
around a more or less anhydrous protein core, the 
axial ratio for X-ray scattering would be (a — 5)/ 
(b — 8) which is in general not equal to a/b, al
though the difference is small for weakly hydrated 
proteins such as ovalbumin. Consequently inas
much as the distribution of hydration is unknown, 
the exact meaning of the numerical results obtained 
in this way remains somewhat uncertain. 

(9) E. J. Cohd and J. T. Edsall, Chapter 18, "Proteins, Amino Acids 
and Peptides," Reinhold Publ. Corp., New York, N. Y., 1943. 

(10) A. Guinier, Ann. fihys., 12, 161 (1939). 
(11) H. N. Ritland, P. Kaesberg and W. W. Beeman, J. Chem. Phys., 

18, 1237 (1950). 
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As an alternative approach to this problem, we 
may compute the values of R corresponding to 
different distributions of hydration from the values 
p = 2.6 for diffusion and H = 0.18 obtained above. 

If we assume tha t the molecular weight of oval
bumin is 44000, the volume of each hydrated oval
bumin molecule can be computed readily from the 
above values of p and II to be 6.76 X 10 - 2 0 cm.3 

Equat ing- th is to (4ir/3)(2.Qb)b2, we obtain b = 
18.4 A. Thus if the hydration is distributed uni
formly throughout the ovalbumin molecule, we 
have by (39) 

* - ( ^ p T S ! ) (18.4)-84.4 A. 

On the other hand if the hydration is distributed as 
a thin layer of uniform thickness 8 wrapped around 
an anhydrous protein core, we have (47r/3)(2.65 — 
8)(b - 5)2(6.023 X 1023) = 44000(0.746 + A') 
where A' is a positive correction term to be added 
to the apparent specific volume, Vp = 0.746, of 
anhydrous ovalbumin in solution to give the " t rue 
specific volume" of the anhydrous protein. For 
approximate calculations, we may solve this equa
tion for 5 by neglecting A'. This gives 8 = 1.65 A. 
corresponding to the above value of b. Conse
quently 

R = ( ^ + {2M -.*miEWyh _ t) = 23.2 A. 
Inclusion of A' in this computation would yield a 
value of R slightly larger than 23.2 A. 

The most reliable measurement on low angle X-
ray scattering in ovalbumin solutions appears to be 
tha t carried out by Ritland, Kaesberg and Bee-
man.11 According to these workers R is equal to 
24.0 for ovalbumin. Thus if this value is correct, 
the actual distribution of hydration for ovalbumin 
must be somewhat intermediate between the 
two extreme cases mentioned above. 

I t may also be recalled tha t had we assumed an 
oblate ellipsoid as the general shape of the hydrated 
ovalbumin molecule, we would obtain the values 
II = 0.13(l/p) = 2.9 instead of the values used 
above. The value ofi? computed from these values 
of II and p is 23.0 A. for uniform distribution of 
hydration throughout the ovalbumin molecule and 
22.2 A. for completely external hydration. If the 
experimental value R = 24.0 A. can be trusted to 
within ± 5 % , we may take the deviations of these 
calculated values from the experimental value as 
evidence against the oblate ellipsoid as a possible 
shape for ovalbumin molecules. 

Comparison with Dielectric Absorption Data 
By assuming tha t the measured dielectric relaxa

tion times are due to the rotations of rigid ellipsoidal 
molecules with permanent dipole moments, Oncley12 

estimated tha t for ovalbumin the axial ratio lies 
between 3 and 7, and the hydration lies between 
0.08 and 0.26. These values are not conspicuously 
inconsistent with the values obtained in this work. 
However, it is difficult to decide whether this com
parison can be used as evidence in favor of Oncley's 
interpretation of dielectric relaxation, because 
preliminary computations based on the Kirkwood-

(12) See p. 562 of reference 9. 

Shumaker theory yield relaxation times of the same 
order of magnitude.1 3 

Valuable information on the hydration of pro
teins recently has been obtained by Buchanan and 
co-workers14 from dielectric measurements a t high 
frequencies at which the measured dielectric 
absorption is ,entirely due to the rotation of the 
water molecules. Est imates on both the amount 
of "irrotationally bound water" and total hydration 
were made by these workers as a function of axial 
ratio, and the possible values so estimated were 
presented in the form of diagrams for several pro
teins. For example, if we accept p = 2.6 deter
mined in this work for ovalbumin, the possible 
values predicted by their diagram^ lie between 0 
and 0.1 for "irrotationally bound water" and be
tween 0 and 0.28 for total hydration. The latter 
range of possible values is not inconsistent with the 
present result H = 0.18 ± 0.01 g. of water per g. of 
anhydrous ovalbumin. 

Examination of the Axial Ratios Obtained from 
Viscosity Data 

The axial ratio of the equivalent ellipsoid for 
ovalbumin has been computed from the viscosity 
data of Poison to be 4.4 and 3.3 for the assumed 
hydration of H = 0.1 and H — 0.3, respectively.16 

Since the actual hydration is II = 0.18, the corre
sponding value of axial ratio must be about 3.9 
according to the above mentioned computations. 
This value differs from our new value by an amount 
much greater than the experimental uncertainties. 
Indeed, examination of existing data indicates tha t 
the axial ratios for different proteins computed 
from viscosity measurements are often consider
ably greater than those from diffusion or X-ray 
measurements.16 This general trend in discrep
ancies suggests tha t there may be some theoretical 
inadequacy in the usual interpretation of intrinsic 
viscosity. 

A possible explanation of these discrepancies is 
tha t the effect of molecular interactions has been 
neglected completely in the Einstein-Simha theory 
of viscosity.16 

Obviously, molecular interactions in protein 
solutions, if present, will contribute to the measured 
specific viscosity. Thus the expression for specific 
viscosity of a protein solution in general should be 
of the form 

- - I = i>,0 + V2^ + (40) 
Vo 

+ hi> + U2 + 
where the terms v\4>, v-i4>2, etc., are due to the vol
ume effect treated in the Einstein-Simha theory, 
and the terms /i</>, fi4>2, etc., are due to molecular 
interactions, e.g., protein-ion interactions, protein-
protein interactions, etc. If we neglect the molec
ular interaction terms, we obtain the usual ex
pression at infinite dilution 

L i m MmillA = ioo[„]/( v» + 1J ) = * (41) 

(13) J. G. Kirkwood, private communication. 
(1-1) T. J. Buchanan, G. H. Haggis, J. B. Hasted and B. G. Robin

son, Proc. Roy. Soc. (London), 213, 379 (1952). 
(15) See, for example, p. 692 of reference 1. 
(16) See, for example, reference 1 for references to the literature. 
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where [17] is the intrinsic viscosity and Vi is the 
viscosity increment of the protein. But if we 
retain the molecular interaction terms in (40) we 
obtain the new limiting expression 

Lim ^ - 1 = 100[„]/(Pp + ! ) - * + / . ( 4 2 ) 

Equation_ 42 shows that the measured value of 
lOOfe]/[Vp + (H/do)] is in general greater than the 
viscosity increment vi by an amount equal to the 
coefficient /x in (40). The usual heuristic explana
tion that the effect of molecular interactions on [17] 
disappears at infinite dilution is based on the im
plicit assumption that the contribution due to these 
interactions involves only terms of the type /„<£" 
with n > 1. There is no definite experimental 
support to this assumption. Indeed, for solutions 
of simple electrolytes we should even include an 
interaction term of the form fi/^l% according to 
Falkenhagen.17 

For protein solutions, (17/170 — l)/<j> approaches a 
(17) See, for example, Harned and Owen, "The Physical Chemistry 

of Electrolytic Solutions," Reinhold Publ. Corp., New York, N. Y., 
1950, p. 67. 

One of the problems that interests and puzzles 
many experimenters engaged in sedimentation and 
ordinary diffusion studies on proteins is the quanti
tative relationship between the mobility of the pro
tein molecules and the measured viscosity of the 
solution. Theoretical investigation of this problem 
is complicated by the inhomogeneity of the liquid 
phase in the direction of sedimentation or diffusion. 
For self-diffusion, however, there is neither net 
back-flow of the solvent nor variation in the activity 
coefficients of the components along the diffusion 
path. Consequently the situation becomes much 
simpler theoretically, and one may expect to get a 
better understanding of the problem by careful 
examination of the self-diffusion coefficients of 
proteins in solution. Unfortunately, no such data 
exist in the literature. In the present work the 
self-diffusion coefficients of water and ovalbumin 
in aqueous ovalbumin solutions at 10° have been 
determined. The results of similar measurements 
on several other protein solutions will be reported 
in later communications. 

Experimental 
Diffusion Measurements.—The improved capillary-

method1 was used in the present work. The rate of stirring 
in the diffusion bath was so adjusted that 2A//7 is negligible 

(1) J. H. Wang, C. V. Robinson and I. S. Edelman, T H I S JOURNAL, 
75, 466 (1953). 

constant value as <£ -*• 0, consequently we have 
f)/2 = 0. But there seems to be no reason for us 
to neglect the term/i0. 

The evaluation of the coefficients /1, /2, etc., 
would require a theoretical treatment of molecular 
interaction in protein solutions, but the simple 
formal relationship considered above should suffice 
to show the heuristic nature of the usual interpreta
tion of intrinsic viscosity. 

While for macromolecules of a high degree of 
asymmetry we may expect that /1 is indeed negligi
ble as compared to vi, for molecules with low axial 
ratios the existing structural information obtained 
from viscosity data may need considerable revision 
in view of (42). Furthermore (42) also suggests a 
new experimental approach for studying molecular 
interactions in protein solutions. 
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as compared to other experimental error. Consequently 
Al could be neglected and the simple relationship 

C~ = £ E0 ̂ Jy exp [-(2, + DWDtm CU 

could be used to compute the self-diffusion coefficient D 
from the measured values of t, I and cav/c0. In the present 
work the self-diffusion coefficients of both water and oval
bumin in aqueous ovalbumin solutions at 10.00 =fc 0.01° were 
determined as a function of protein concentration. In the 
measurements on the self-diffusion of water, capillaries of 
about 0.002 cm.2 in cross-sectional area and with length be
tween 2 and 3 cm. were used. The diffusion time t was 
between 1 and 1.5 days. Under these conditions Dt/I2 was 
almost always greater than 0.2 so that it is sufficiently ac
curate to omit all terms after the first on the right-hand 
side of equation 1. Thus we have 

Dt 4 / 8 _ c 0 \ ,„ . 

y = - 2 l « ( - 2 X - ) (2) 
Equation 2 was used to compute all the self-diffusion co
efficients of water from the experimental data. For meas
urements on the self-diffusion of ovalbumin, capillaries with 
the same cross-sectional area as those described above but 
with length between 0.7 and 0.9 cm. were used. The use of 
these short capillaries for the protein is necessary because 
of the small self-diffusion coefficient of ovalbumin and the 
ease with which ovalbumin denatures. By using these ex
tremely short capillaries it was found possible to complete 
the diffusion measurements in from six to 14 days without 
excessive amounts of denaturation. Despite these long 
diffusion times, the value of Dt/l2 for the protein was often 
much less than 0.2 so that it was necessary to evaluate D 
from the experimental data by means of equation 1. This 
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